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Abstract 
Fluid flow in two dimensional random porous media is simulated at pore level using 
the Lattice Boltzmann Method. Random media are constructed by placing identical 
rectangles with a random distribution and free overlapping. Different domain 
resolutions are examined and it is shown that the effect of the domain resolution is 
negligible in the range examined. Simulations clearly indicate, for the same porosity, 
the permeability of the random porous media is lower than the permeability of the 
regularly ordered medium; the permeability, independently of the porous media 
organization, varies exponentially with the porosity. Average tortuosity of the flow is 
calculated and it is proposed its correlation with the porosity. The effect of the aspect 
ratio of the randomly placed obstacles on the predicted tortuosity and permeability is 
studied, and it is found that an increase of the obstacles’ aspect ratio (height to width 
ratio) yields an increase of the tortuosity and consequent decrease of the permeability. 
The predicted values of the permeability and tortuosity are in close agreement with the 
data available in the literature.  
 
Keywords: lattice Boltzmann Method, Permeability Prediction, Random Porous 
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1. Introduction 
The prediction of the permeability of porous media has been a challenge for engineers 
and scientists. Literature dealing with permeability prediction is vast, but most 
methodologies, and in particular those based on experimentally-based correlations, 
suffer from lack of generality primarily due to the assumptions that they embody.  
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Nomenclature 
 

 A0 obstacle area 
 C Kozeny constant 
 ic  lattice discrete velocity set 
 sc  lattice sound speed 
 D space dimension (2) 
 Dx obstacles’ width (in x direction)  
 Dy obstacles’ height (in y direction) 
 f  particle distribution function 
 K            perrmeability 
 Kn Knudsen Number 
 P pressure 
 0P  obstacle perimeter 
 0R  hydraulic radius of an obstacle 
 S specific surface area 
 t time 
 u fluid velocity 

x spatial position 
 Greek letters 
 ϕ  porosity 
 δt  lattice time step 
 τ  tortuosity 
 Τ  transformed tortuosity 
 ω  inverse of the lattice relaxation time 
 iβ  weighting factor for the lattice directions 

 λ  constant parameter in Box-Cox transformation 
 µ  fluid viscosity 
 Superscripts 
 eq equilibrium 
   

 
In recent years, fluid flow simulation at pore level has received considerable 

attention as a powerful tool for the permeability prediction. In this approach, fluid 
flow is simulated in the inter-grain regions and inside the pores of the porous medium. 
The permeability of the medium can be calculated using the Darcy law [1] by 
averaging the local velocities over the flow domain and by using the pressure 
gradient, namely: 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
x
PKu

µ
                                                                                        (1)                                

The very first challenge in these analyses is to determine the structure of the 
medium at pore level. Applied experimental and imaging techniques have had some 
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success in the determination of these structures [2]; even so, experimental methods 
have their own limitations and, in general, are costly. An alternative approach, which 
has been popular with many researchers in this field, is to simulate the fluid flow in a 
reconstructed virtual medium capable of reproducing the real medium behavior. The 
medium can be formulated, as a first approximation, by considering ordered or 
random packing of spheres, cylinders or rectangular parallelepipeds. It should be 
noted that for pore level analyses, the length scale is usually taken as the average size 
of the pores; therefore, the Knudsen number (Kn) can be locally high (0.01 < Kn < 
0.1) and the flow may fall into the slip flow regime, for which the Navier Stokes 
equation is still applicable, but some velocity slip should be allowed. 

The Lattice Boltzmann Method (LBM) [3, 4] is an alternative methodology to the 
Navier Stokes equations for the fluid flow simulation at the pore level. The LBM is 
capable of dealing with the complex geometries of the porous media at pore level, and 
can handle both the continuum or slip flow regimes with no need for further 
modifications.  

The first LBM simulation of the fluid flow in porous media was performed by Foti 
and Succi [5] and since then the literature associated with the LBM simulation of fluid 
flow in porous media has been steadily growing. Cancelliere et al. [6] studied the fluid 
flow in a three dimensional porous medium constructed by randomly positioning 
spheres of equal radii. They reported that the predicted permeability at the high solid 
fractions agreed with the Kozeny-Carman equation, and at low solid fractions it 
approaches the lower limit of the variational bounds. Heijs & Lowe [2] discussed the 
flow in a random array of spheres and a clay soil sample using the LBM. They used 
the bounce back scheme for modeling the solid wall boundary condition, and they 
found the LBM yields acceptable results even with very coarse lattice. In their study, 
it was assumed the flow only occurs in the connected pores identified experimentally 
by computed tomography (CT) imaging in the sample under study. This means that 
the flow in the small pores, which may have not been detected by the CT imaging, 
was neglected, so the results may have underestimated the permeability. Koponen et 
al. [7] studied the creeping flow through large three dimensional random fibers web 
using the LBM with the D3Q19 lattice. For the faces of the flow domain, the periodic 
boundary condition was implemented. The solid walls were treated by employing the 
bounce back scheme, which, as it was found, led to results that were sensitive to the 
lattice resolution. It was also noted the Knudsen effect may occur in the small pores. 
The Darcy law was used to calculate the permeability, and they reported that it was 
exponentially dependent on the porosity and independent of whether the fibrous 
porous medium was random or not. No theoretical explanation was given for this 
observation. They compared with good agreement their results against experimental 
data. Clague et al. [8] studied the permeability of three dimensional ordered and 
disordered fibrous media. They analyzed wall bounded and unbounded media cases 
and the effect of the wall on the overall permeability of the fibrous media; for the wall 
boundary treatment, the bounce back method was used. Three dimensional lattices 
with 15 velocities and 19 velocities were employed, and for the low Reynolds number 
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flows, both models yielded nearly identical results. Their predictions were in very 
good agreement with the available data. A phenomenological relation was developed 
by curve fitting the calculated values for the permeability of both the bounded and 
unbounded three dimensional fibrous media. Pan et al. [9] studied the flow through 
random packing of spherical particles with random diameter using the LBM along 
with the pore network modeling approaches for the low Reynolds number flow. A 
log-normal sphere size distribution, as proposed by Yang et al. [10] was used, along 
with a D3Q15 lattice.  

In the present study, fluid flow in two dimensional random porous media was 
simulated at pore level using the LBM; rectangle obstacles were placed randomly in 
the flow domain with a uniform distribution. Domain resolution and particles 
geometry were studied for their effect upon the predicted permeability and tortuosity. 
The simulation results, as it will be shown, are in very good agreement with the 
previously published correlations. 

 

2. Methodology 

In the present study, fluid flow in two dimensional random porous media was 
simulated at pore level using the single relaxation time Lattice Boltzmann Equation 
(LBE) [3]; the evolution equation of the particles, which governs the fluid dynamics, 
is written in the following form: 

[ ]),(),(),(),( txftxftxftttcxf eq
iiiii

rrrr
−−=−++ ωδδ                                           (2)                                

where δt , ω  and ic  are the lattice time step, inverse of the lattice relaxation time and 
the lattice discrete velocity set, respectively, and f  is the particle distribution 
function. 

The discrete velocity set of the particles for a D2Q9 lattice, which is used in the 
present study, is defined as  

( )
( ) 8,6,4,2)4/)1sin(),4/)1cos(2

7,5,3,1)4/)1sin(),4/)1cos(
00

=−−=

=−−=
=

iiicc

iiicc
c

i

i

ππ

ππ                                           (3)                                

The equilibrium distribution function, which is the second order truncated 
expansion of the Maxwell-Boltzmann equilibrium function, is written as  
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where iβ  is the weighting factor and is equal to 
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The macroscopic density and velocity on each lattice site are calculated using the 
distribution function on that site and the neighboring sites, namely: 
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Fluid viscosity is calculated using the relaxation frequency and the lattice sound speed 
as follows: 
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Two dimensional rectangle obstacles were placed in the flow domain with a 
random distribution and free overlapping. Periodic boundary conditions were 
implemented in the flow direction; solid wall boundary conditions are set in the 
transverse direction and they are modeled using the bounce back method [4, 12]. 
Along the flow direction, a gravitational body force was applied by adding a specified 
portion of the momentum at each time scale to all the particles within the pore space. 
To generate the random porous medium, three different sizes of the domain and 
obstacles were used, namely: 10×10 obstacles in a 100×100 domain, 8×8 obstacles in 
an 80×80 domain and 5×5 obstacles in a 50×50 domain. The actual porosity of the 
medium was calculated as the ratio of the number of the lattice sites in the fluid area 
to the total number of the lattice sites. For each domain resolution, several runs were 
conducted with porosities ranging between 0.5 and 0.97. All the three domain 
resolutions yield nearly similar average results. The increase of the domain size will 
reduce the error resulting from the bounce back solid wall treatment [13]; therefore, 
the remaining part of the study is conducted with the 100×100 domain and the 10×10 
obstacles, unless otherwise mentioned. 

The relaxation time for all the simulations was set to 1.25, resulting in a lattice 
viscosity of 0.1 in a D2Q9 lattice; therefore the effect of the viscosity on the predicted 
permeability was negligible [14]. The predicted permeability using the Darcy law [1] 
is reported as 2

0/ RK , where 0R is the hydraulic radius of an obstacle defined as: 

0

0
0 P

DAR =                                                                                                             (9)                                

where A0, P0 and D are the obstacle area, obstacle perimeter and the number of space 
dimensions considered, respectively. In the present case, D is equal to 2, because the 
study was conducted for a two-dimensional space. 

 

3. Results 
Figure 1 shows the comparison between the predicted permeability for a random 
medium and for a regularly ordered medium, and the value determined from the 
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modified Kozeny relation; to take into account the effect of the dead-end and non-
connecting pores in a random medium, the effective porosity was introduced into the 
Kozeny equation as proposed by Koponen et al. [15], namely: 

22

3

SC
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τ

ϕ
=                                           (10)                                

where effϕ , τ and S are the effective porosity, tortuosity and specific surface area, 
respectively; the Kozeny coefficient, C, takes the values of 5.8, as given by Koponen 
et al. [15]. Effective porosity was defined as the ratio of the volume of conducting 
pores to the total volume and can be mathematically described as a function of the 
porosity [15]. At low porosity, the fraction of the dead end and non-conducting pores 
is higher, therefore higher is the difference between the actual and effective porosity. 
It can be noted that the agreement between the predicted average permeability and the 
Kozeny equation is very good. For porosities less than 0.9, the permeability of the 
ordered medium is higher than the random medium permeability and its predicted 
values are in very good agreement with the results given by the Kozeny equation 
based on the effective porosity. In this region, the permeability is an exponential 
function of the porosity whether it is an ordered medium or a random medium. For 
porosities higher than 0.9, the Kozeny equation tends to overestimate the 
permeability. In high porosity media, as obstacles are distributed sparsely in the flow 
domain, the contribution to the permeability of dead end pores and tortuous flow 
passages tends to be reduced, because they are more likely to occur in lower 
porosities. Even so, these particular flow obstacles may explain why the average 
permeability of a random medium is lower than the permeability of a regularly 
arranged medium with the same porosity. 
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Fig.1. Comparison between the permeability predicted in the present study and 
the permeability obtained with the Kozeny equation using the actual and 

effective porosity. 
One of the important features of the flow in the random porous medium is the 

tortuosity of the flow and it can be defined as the ratio of the length of the actual path 
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of the fluid particles to the shortest path length in the direction of the mean flow. In 
the present study, the volume averaged tortuosity is calculated as follows: 
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where the mean flow is in x direction and magu is the velocity magnitude, namely: 

22 ),(),(),( jiujiujiu yxmag +=                          (12)                                

Koponen et al. [15] studied the permeability and tortuosity of two dimensional 
random porous media using the LGA. The tortuosity was correlated as a function of 
the porosity as follows 
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where a, m and cϕ are equal to 0.19, 0.65 and 0.33, respectively. 
Koponen et al. [16] studied the tortuosity of the flow in a random two dimensional 
porous medium using the LGA with periodic boundary conditions in both directions. 
Obstacles were defined as randomly placed squares with free overlapping. Different 
formulations for the tortuosity calculation were discussed and the following 
correlation for the tortuosity as a function of the porosity was presented:  

1)1(8.0 +−= ϕτ                                                    (14)                                
Figure 2 presents the predicted tortuosity versus porosity; tortuosity is always 

greater than one, and as the porosity approaches one, it should tend to one, as 
expected; the tortuosity increases with decreasing porosity.  
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Fig.2. Predicted tortuosity as a function of the porosity 
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A third order polynomial can be used to fit the simulation results for the averaged 
tortuosity as a function of the porosity. Its formulation is as follows: 

1.8058  1.1657 - 0.879  0.5191- 23 ++= ϕϕϕτ                               (15)                                
The fitted polynomial has the least error in comparison with the straight line 

correlations [16], and the curve fitting error is nearly the same for both high and low 
porosity regions. In addition, this polynomial is capable of capturing the nonlinear 
dependence of the tortuosity on the porosity at high porosities; the condition of τ(1) 
equal to 1 is satisfied with no need for further tuning up of the fitting parameters. But 
as it can be clearly seen in Fig. 2, the variance of the data point around the mean value 
is not constant and the lower the porosity, the higher variance and more scatter data 
points. To overcome this problem, the data points can be transformed using a power 
transformation known as Box-Cox transformation [17], namely: 
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where λ  is an arbitrary real constant number. The optimum value of λ  should 
minimize the Sum of Squared Errors (SSE), which is defined as: 

( )∑ −=∑=
==

n

i
ii

n

i
ieSSE

1

2

1

2 τ̂τ                                                  (17)                                

where τ̂  is the value obtained using the fitted polynomial. Testing of the SSE for 
different values of λ , it yields the optimum value of λ  equal to -3.99, when 
approximately 300 data points are employed. Using this value of λ  and transforming 
the data points, a polynomial of order of 3 can be fitted to the results as follows: 

1.43184.6039-6.8942 -3.7148 23 ++=Τ ϕϕϕ                                                    (18)                                
Figure 3 shows the plot of ϕτ −  and ϕ−Τ  and the fitted polynomials to each set 

of data. It can be seen that the transformed values of tortuosity are scattered more 
uniformly around the fitted polynomial for whole range of the porosity. Equations 16 
and 18 can be used together to explicitly calculate the tortuosity as a function of the 
porosity. 

Previous work by the authors [18] has demonstrated the obstacles’ geometry has 
major effect on the flow pattern and on the predicted permeability of a regular ordered 
porous medium; by increasing the height to width ratio of the obstacles, while keeping 
the porosity constant, the permeability decreases. Figure 4 presents the streamlines 
and continuous contours of the velocity magnitude for three different obstacle aspect 
ratios - 0.5, 1 and 2; darker regions indicate higher local velocity magnitudes. The 
high tortuosity path of the flow in the region bound by the randomly placed obstacles 
is clearly apparent for the cases presented. Obstacles with larger height to width ratio 
exert more resistance to the mean flow path and are more likely to obstruct or 
eliminate the flow passages. The size of the obstacles is chosen with the purpose of 
keeping the total area of the obstacles nearly constant. 
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Fig.3. Tortuosity and transformed tortuosity data versus porosity and fitted 

polynomials. 

 

   

   
i) Porosity=0.80,  
Dx=10, Dy=10 

ii) Porosity= 0.72,  
Dx=14, Dy=7 

iii) Porosity =0.68,  
Dx=7, Dy=14 

Fig.4. Streamlines and velocity magnitude contour for three different obstacle 
aspect ratios (0.5, 1, 2) in a 100×100 domain with randomly placed obstacles 

Figure 5 reports on the effect of the obstacles’ aspect ratio on the predicted 
tortuosity. As observed in Fig. 4, the flow tortuosity increases with increasing aspect 
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ratio; the effect of the obstacles’ aspect ratio is more pronounced at lower porosities, 
and at the high porosities, it is practically negligible. 
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Fig.5. Effect of the aspect ratio of the obstacles on the predicted tortuosity. 

 

5.  Conclusion  

In conclusion, the effect of the domain resolution on the results for permeability and 
tortuosity was investigated, and it was concluded the relaxation time and the lattice 
density used led to lattice independent results. It was found the permeability of a 
random medium is lower than the permeability of a regularly ordered medium with 
the same porosity. The permeability, independently of the porous medium structure, 
varies exponentially with the porosity. Average tortuosity of the flow was also 
calculated for an extensive set of conditions; the numerical data generated were 
correlated using a third order polynomial. The proposed correlation for the average 
tortuosity is in very good agreement with previously published correlations and 
describes well the asymptotic value of the tortuosity for high and low porosity. It was 
also found the increase of the obstacles’ aspect ratio (height to width ratio) yields an 
increase of the tortuosity and, consequently, a decrease of the permeability. Like in 
regularly ordered media, the effect of the obstacles’ aspect ratio is augmented at low 
porosities and it is practically negligible at high porosities. 
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